
USENIX Security ’24 Artifact Appendix: Towards Privacy-Preserving
Social-Media SDKs on Android

Haoran Lu, Yichen Liu, Xiaojing Liao, Luyi Xing

Indiana University Bloomington
{haorlu, liuyic, xliao, luyixing}@indiana.edu

A Artifact Appendix

A.1 Abstract
Under the context of XLDH threats, we generalize and define
what are privacy-preserving social-media SDKs and their in-
app usage, characterize fundamental challenges for combating
the XLDH threat and guaranteeing privacy for the design of
and practice with social-media SDKs. We also release the
entire dataset on our website. We present a practical, clean-
slate design and end-to-end systems called PESP to enable
privacy-preserving social-media SDKs against the emerging
privacy threat. Our thorough evaluation showed its satisfac-
tory effectiveness, performance overhead and practicability
for adoption. We employ case studies of demos using PESP
to demonstrate its effectiveness. For performance overhead,
we provide data and scripts to reproduce the result. Our tech-
niques are expected to significantly elevate privacy assurance
and compliance for multiple stakeholders.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifacts are developed with no inherent security, privacy,
or ethical concerns. Nevertheless, as a precaution, we recom-
mend installing and testing our system on a non-production
Android phone or using the environment we provide.

A.2.2 How to access

The implementation code of the system is cur-
rently available on GitHub at https://github.com/
PESP-privacy-preserving-social-SDK/PESP/tree/
4d5b699f40f18ebdb61118e435bd99d0d3d46907. Please
follow the instructions provided in the README.md file.

A.2.3 Hardware dependencies

For the implementation and evaluation of our system, we
have comprehensively tested the use case on a real Android
device, the Google Pixel 6 (Android version 13, r16), and

on an Android emulator, the Google Pixel 3a (Android
version 14, ARM64 v8a). The minimum Android device
requirement is version 13, r16. For installing Android Studio,
we recommend a system with 16GB of memory and a
solid-state drive of at least 16GB. Notably, systems with
Apple M1/M2 chips are compatible.

A.2.4 Software dependencies

PESP requires Android Studio, and an Android real device
(Android version 13, r16) or an Android emulator. Please note
that if you install Android Studio by default, you do not have
to install Android emulator on your own. We have thoroughly
tested the build process on macOS 14 and Ubuntu 22.04.
Dependencies.

• Linux OS/macOS/Windows, preferably Ubuntu 22.04
LTS, macOS 14

• Android Studio with emulator, preferably latest
version v2023.2.1, for E1 with Gradle
version 7.2, for E2 with minimum Gradle
version >= 6.7.1 and <7 and JDK version 1.8

• Android emulator (do not have real devices), prefer-
ably Pixel or other emulator with Android
version ≥ 13, r16, and we recommend using
the one installed with Android Studio

• python 3.11

• numpy ≥ v1.24.3

• scipy ≥ v1.11.1

• python-dateutil prefer the latest version

A.2.5 Benchmarks

Given the absence of similar works, we do not include
specific benchmarks. The baseline of our work is the
original Facebook and Twitter SDK, and we provide

https://github.com/PESP-privacy-preserving-social-SDK/PESP/tree/4d5b699f40f18ebdb61118e435bd99d0d3d46907
https://github.com/PESP-privacy-preserving-social-SDK/PESP/tree/4d5b699f40f18ebdb61118e435bd99d0d3d46907
https://github.com/PESP-privacy-preserving-social-SDK/PESP/tree/4d5b699f40f18ebdb61118e435bd99d0d3d46907


the original Facebook SDK for comparison (facebook-
android-sdk-main under our project https://github.com/
PESP-privacy-preserving-social-SDK/PESP/tree/
4d5b699f40f18ebdb61118e435bd99d0d3d46907).
We release the whole Table 1 in our repository under folder
use-case-table. It serves to demonstrate the existence of Type
I and Type II workflows.

A.3 Set-up

A.3.1 Installation

To install the necessary software dependencies, including
Android Studio, download the latest version from https:
//developer.android.com/studio and refer to the pro-
vided documentation for guidance on installation across differ-
ent operating systems https://developer.android.com/
studio/install. Opt for the standard installation process,
and follow the on-screen instructions to download all required
components. The installation of Android Studio will automat-
ically include an Android emulator. For building the PESP
and demo applications, please consult the README.md file
on our GitHub page.

Notably, if you want to change Android Studio settings, you
can click File > Settings. If you want to change Gradle version
when building Android projects, please click File > Project
Structure > Project menu and select Gradle version. If it’s
the first time you build the project, it may take a while. Once
it finishes Gradle building, you can click on the "green play
button" to install and run the APK on the Android emulator.

A.3.2 Basic Test

After installing Android Studio, you have the option to test
the Android emulator, with Google Pixel 3a set as the default.
Locate the plug icon next to "Running Devices" and click it.
Then select the first virtual device, Pixel3a, from the list. The
virtual device should power on within a few minutes.

To check the versions of numpy and scipy installed on
your system, you can use the following commands in your
terminal:
python3 -c "import numpy; print(numpy.version.version)";
python3 -c "import scipy; print(scipy.version.version)"

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The example application illustrates the effectiveness of
PESP. To replicate the case study and security analysis,
which involves displaying a Facebook user profile under
PESP as described in Section 5.2, you can follow and

verify Experiment (E1). The results are presented in
Figure 3 in the Appendix of the paper.

(C2): The performance overhead of PESP is practical com-
pared to baseline. This is supported by experiments (E2,
E3) described in section 5.4.1 whose results are illus-
trated in Tables 2.

A.4.2 Other Claims

In our repository, we provide four materials.

• paperImplementation: An Android studio Project con-
taining the client_app(developers’ app in the paper) and
an sdk_app(social medial SDK in the paper).

• facebook-android-sdk-main: An Android studio Project
containing the original implementation of FB SDK and
Twitther SDK from the official Facebook and Twitter
code release, used as a baseline with logging enabled for
evaluation purposes.

• evaluation-table-data: Original logging and metric com-
putation code in Python used to fill the tables, including
Table 2 Performance overhead (single social SDK per
app) and Table 3 Performance overhead (multiple social
SDKs per app).

• use-case-table: We provide the detailed table mentioned
in Table 1 in the paper.

In paperImplementation, we provide commands to execute the
prototype implementation. For facebook-android-sdk-main,
we use it as the baseline, and we provide commands to run
the sdk prototypes. For the Table 2 and Table 3 mentioned
in paper, we provide scripts and logs to reproduce the re-
sults. More specifically, we provide detailed steps to manu-
ally collect logs and reproduce Table 2 (see evaluation-table-
data/table2/table2.md), but we will not provide instructions
for Table 3. In use-case-table, we provide detailed table men-
tioned in Table 1. The results are analyzed by hand by two
authors, and we will not include this part for AE.

A.4.3 Experiments

(E1): Case study and security analysis of displaying Face-
book user profile under PESP [5 human-minutes + 10
compute-minutes]: build and run the case study example
app on an Android emulator or real Android device.
How to: Build and run our example app using PESP.
Preparation and execution: Please follow the instruc-
tions in README.md within the code package to build
sdk_app and client_app. Note that building an Android
project in Android Studio for the first time may take
longer.
Results: After building the PESP sdk and example app,
on the Android emulator or the real device, you can

https://github.com/PESP-privacy-preserving-social-SDK/PESP/tree/4d5b699f40f18ebdb61118e435bd99d0d3d46907
https://github.com/PESP-privacy-preserving-social-SDK/PESP/tree/4d5b699f40f18ebdb61118e435bd99d0d3d46907
https://github.com/PESP-privacy-preserving-social-SDK/PESP/tree/4d5b699f40f18ebdb61118e435bd99d0d3d46907
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/install
https://developer.android.com/studio/install


click "FB PROFILE" to recreate Figure 3 in our paper.
You can also click button "FB DEMO" and "TWITTER
DEMO", these are for section 5.1 and section 5.3, and we
will collect the time in logs to calculate the performance
overhead in Table 2.

(E2): Base case of using original Facebook SDK without
PESP [5 human-minutes + 10 compute-minutes]: build
and run the samples in an Android emulator or real
Android device. The aim is to compare the performance
overhead of using original Facebook SDK and PESP.
How to: Build original Facebook SDK and run sam-
ples.
Preparation and execution: Please follow the instruc-
tions in README.md on Github for building and run-
ning Facebook SDK samples, such as FBLoginSample.
Be aware that the required Gradle version for these sam-
ples differs from that for PESP; the minimum Gradle
version is v6.7.1, and JDK v1.8 is recommended. Addi-
tionally, note that building an Android project in Android
Studio for the first time may take longer.
Results: After building the original Facebook SDK and
the sample app, on the Android emulator or the real
device, you can use basic functions like login or display
user profile.

(E3): Performance overhead [5 human-minutes + 3 compute-
minutes]: Reproduce results in Table 2.
How to: Please follow the python com-
mands in README.md and evaluation-table-
data/table2/table2.md on Github.
Results: The results will display directly after running
each command.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Other Claims
	Experiments

	Version


